Ergonomic features include the “FlexFit” mechanism enabling continuous pivoting height adjustment of the control panel, allowing the user to adjust distance to the control panel while providing the adequate legroom for standing or sitting positions. In addition, the articulating monitor arm (horizontal and vertical), and lightweight transducers combine to make the Vivid S60 an extremely ergonomic-friendly cardiovascular ultrasound system.

Portability – The Vivid S60’s compact size and light weight, combined with a fold-down monitor, enables easy transportation and promotes scanning at the patient site. The battery option provides a transportation mode that keeps the system ready to scan within a few seconds of being connected to a power outlet.

The cSound platform takes GE’s Raw Data to a new level. For image processing and reconstruction, the Vivid S60 utilizes more than 100 times the data compared to the Vivid S6. Additionally, the Vivid S60 uses the proven Raw data format technology that allows for advanced processing on archived images by applying many of the same scan controls and advanced quantitative tools as are available during the original exam.

General Specifications

Dimensions and Weight

- Width: 54 cm, 21.4”
- Depth: 76 cm, 30.2”
- Height: 138 cm – 168 cm, 54.4” – 66.7”
- Minimum height with folded screen: 112 cm, 44.4”
- Weight: <73 kg, 161 lbs
Electrical Power
- Nominal input voltage: 100-240 VAC, 50/60 Hz
- Rated power consumption: 500 VA

Uninterruptible Power Supply
- Battery backup for standby
- In case of power failure or accidental shutdown, when power is restored within less than 20 minutes, the system automatically turns on instantly, maintaining exact system state prior to shutdown
- For longer periods of power interruptions, the system automatically saves data and changes into "Standby" state

Operating System
- Windows® 7

Console Design
- Five active probe ports
- ECG port
- Integrated HDD
- Multiple USB ports (front/back)
- Integrated DVD-R multi drive (optional)
- On-board storage for B/W thermal printer
- Integrated speakers for premium sound
- Four swivel wheels – front wheel breaks, rear wheels direction lock
- Integrated cable management
- Easily accessible removable air filters for cleaning
- Front and rear handles
- Rear storage trays/baskets
- Hand rest

User Interface

Operator Keyboard
- Ergonomic FlexFit design with left/right swivel and up/down arm-mobility of keyboard and monitor permitting both physiological sitting or standing operation
- Touch keyboard with support for characters in 12 languages
- Drawer type A/N keyboard with adjustable backlight (option)
- Physical keyboard support for international characters in 12 languages (option)
- Ergonomic hard key layout
- Interactive back-lighting of application-specific push buttons – adjustable back-light intensity
- Integrated gel holders
- Easy-to-learn user interface with intelligent keyboard
- Dedicated rotary for overall gain for 2D-mode
- Dedicated gain rotary for M-mode, CFM or Doppler controlled by active mode
- Image manager on the touch screen for quick review of image clipboard contents
- Tint and backlight adjustments
- Separate adjustment for external monitor brightness/contrast

System Overview

Probe Presets
- Cardiac
- Stress (optional)
- Abdominal
- Peripheral vascular
- Fetal heart
- Pediatrics
- Neonatal cephalic
- Adult cephalic
- Small parts
- Thyroid
- Musculoskeletal
- Urology
- Rodent (optional)
- Transesophageal
- OB/GYN
- Coronary
- LVO contrast (optional)
- Nerves

Operating Modes
- 2D tissue
- 2D color flow
- 2D angio flow
- Color M-mode
- Tissue velocity M-mode
- Continuous wave Doppler
- Tissue M-mode
- Pulsed wave Doppler
- Anatomical M-mode
- Curved anatomical M-mode
- Tissue velocity imaging
- Tissue tracking
- Tissue synchronization imaging (optional)
- Strain imaging (optional)
- Strain rate imaging (optional)
- Tissue velocity Doppler
- Blood flow imaging (optional)
• B-flow (option)
• 2D stress (optional)
• AFI Automated Function Imaging (optional)
• Auto EF (optional)
• 2D virtual apex imaging
• Coded phase inversion
• Compound imaging
• Extended field-of-view (LOGIQView)

Scanning Methods
• Electronic sector
• Electronic convex
• Electronic linear
• CW pencil

Transducer Types
• Sector phased array
• Convex array
• Linear array
• Single crystal matrix array
• 2D matrix array (option)

Peripheral Options
Internal peripherals
• USB B/W video printer with control from system (optional)

External peripherals
• Network printers
 - Color laser printer
 - Color video printer with control from system
• 16 GB encrypted memory stick
• Three-pedal configurable footswitch

External outputs
• DVI-D
• Ethernet – 10 Mbps, 100 Mbps, 1 Gbps electrically isolated
• Multiple USB 2.0 ports

Accessories (options)
• Interface cable for external ECG and external respiratory
• ECG adapter for DIN-type pediatrics electrode leads
• Cable storage box

Display Modes
• Live and stored display format: Full size and split screen, both with thumbnails, for still and cine
• Instant-review screen displays 12 simultaneous loops/images for a quick study review
• Selectable display configuration of duplex and triplex modes: Side-by-side or top-bottom during live, digital replay and clipboard image recall
• Single, dual and quad-screen view
• Simultaneous capability
 - 2D + PW/CW
 - 2D + CFM/TVI + PW
 - 2D + CFM + CW
 - 2D + CFM/Angio/TVI/SRI/TT/Si/TSI
 - 2D + M/AMM/CAMM
 - 2D + CFM/Angio/TVI/SRI/TT/Si/TSI + M/AMM/CAMM
 - Real-time duplex or triplex mode
 - Compound + M/CFM/PW
 - 2D + color split screen (simultaneous mode)
• Selectable alternating modes
 - 2D or compound + PW
 - 2D + CW
 - 2D or compound + CFM/PW
 - 2D + CFM + CW
• Multi-image (split/quad screen)
 - Live and/or frozen
 - Independent cine playback
• Timeline display
 - Independent 2D (or compound) + PW/CW/M display
 - A choice of display formats with various sizes of 2D + PW/CW/M
• Top/bottom selectable format
• Side/side selectable format

Display Annotation
• Patient name: First, last and middle
• Patient ID
• Additional patient ID
• Age, sex and birth date
• Hospital name
• Date format: Two types selectable – MM/DD/YY, DD/MM/YY
• Time format: Two types selectable – 24 hours, 12 hours
• Gestational age from LMP/EDD/GA
• Probe name
• Map names
• Probe orientation
• Depth scale marker
• Focal zone markers
• Image depth
• Zoom depth
• B-mode
 - Gain
 - Imaging frequency
 - Frame averaging
• M-mode
 - Gain
 - Frequency
 - Time scale
• Doppler mode
 - Gain
 - Angle
 - Sample volume size and position
 - Wall filter
 - Velocity and/or frequency scale
 - Spectrum inversion
• Time scale
 - PRF
 - Doppler frequency
• Color flow Doppler mode
 - Frame rate
 - Sample volume size
 - Color scale
 - Power
 - Color baseline
 - Color threshold marker
 - Color gain
• Spectrum inversion
• Acoustic frame rate
• CINE gauge, image number/frame number
• Bodymarks: Multiple human anatomical structures
• Application/preset name
• Measurement results
• Operator message
• Displayed acoustic output
 - TIS: Thermal Index Soft Tissue
 - TIC: Thermal Index Cranial (Bone)
 - TIB: Thermal Index Bone
• MI: Mechanical index
• Power output in dB
• Biopsy guide line and zone
• Heart rate
• Trackball-driven annotation arrows
• Active mode display
• Stress protocol parameters
• Parameter annotation follow ASE standard
• Free text with word library
• Scan plane position indicator and probe temperature are displayed with all TEE probes
• Image orientation marker

General System Parameters

System Setup
• Pre-programmable M&A and annotation categories
• Different user presets per probe/application may be stored for quick access
• User programmable preset capability with administrator preset protection
• Factory default preset data, protected against modification
• User Interface languages: English, LA Spanish, French, German, Italian, Portuguese (European and Brazilian), Russian, Swedish, Norwegian, Danish, Dutch, Finnish
• User-defined annotations
• Body patterns
• Customized comment home position

Comprehensive User Manual Available on Board
Available through touch-panel utility page. User manual and service manual are included on a USB memory device with each system. A printed user manual is provided.

CINE Memory/Image Memory
• 2 GB of cine memory
• Selectable cine sequence for cine review
• Measurements/calculations and annotations on cine playback
• Scrolling timeline memory
• Dual-image cine display
• Quad-image cine display
• CINE gauge and cine image number display
• CINE review loop
• CINE review speed

Image Storage
• On-board database of patient information from past exams
• User-selectable ECG and time gated acquisition available on touch panel during live
• User-selectable prospective or retrospective capture in config
• Storage formats:
 - DICOM®-compressed or uncompressed, single/multi-frame, with/without raw data, storage via clipboard and/or seamlessly directly to destination device
 - Transfer/"Save As" JPEG, MPEG and AVI formats
• Storage devices:
 - USB memory stick: 16 GB
 - CD-RW storage: 700 MB (DVD option required)
 - DVD storage: -R (4.7 GB) (DVD option required)
 - Hard drive image storage: 0.5 TB
• Compare old images with current exam
• Reload of archived data sets
• Activation control of USB devices (for security)

Connectivity and DICOM
• Ethernet network connection
• DICOM 3.0
• Verify (optional)
• Print (optional)
• Store (optional)
• Modality worklist (optional)
• Storage commitment (optional)
• Modality Performed Procedure Step (MPPS) (optional)
• Media exchange
• DICOM spooler (optional)
• DICOM query/retrieve (optional)
• Structured reporting - compatible with adult cardiac and vascular (optional)
• Media store of structured reporting
• InSite™ ExC capability for remote service/access
• Support of two patients’ IDs in DICOM (optional)
• Separate DICOM SR and image storage destinations (optional)
• Simultaneous transfer of DICOM to multiple destinations (optional)

Patient Archive

EchoPAC™/Patient Archive
• Integrated EchoPAC functionality adds connectivity and image analysis capability to scanner
• Data format fully compatible with offline EchoPAC review/reporting stations of same or newer vintage
• Instant access to ultrasound raw data provided by the system
• Advanced post-processing analysis
• Three user levels help organizing data security requirements
• E-signoff compatibility, with clear indications in patient management screens and report screen that a report was signed off, and by whom and at what time. The signed off report and exam cannot be changed. The "Diagnosing Physician" field is automatically assigned to the user that did the sign-off

Image and Data Management

• Exceptional workflow with instant access data management
• DICOM 3.0 support – see DICOM conformance statement for details
• Support for transfer of the proprietary raw data files within the DICOM standard
 - 2D, CFM or TVI data at maximum frame rate may be reviewed by scrolling or by running cine loops (can contain more than 1000 images for imaging modes)
• Image clipboard for stamp-size storage and review of stored images and loops
• Built-in patient archive with images/loops, patient information, measurements and reports
• DICOM-SR Standard structured reporting mechanism (optional)
• Structured findings report tools support efficient text entries with direct editing of findings text, usability improvements, new configuration options and conclusion section
• User can enter normal values which are then compared to actual measurements
• Configurable HTML-based report function
• Report templates can be customized on board
• ASE-based default text modules (English), user-customizable
• Internal archive data can be exported to removable image storage through DICOM media
• Internal hard disk – for storing programs, application defaults, ultrasound images and patient archive
• All data storage is based on ultrasound raw data, allowing to change gain, baseline, color maps, sweep speeds, etc., for recalled images and loops
• DICOM media – read/write images on DICOM format
• DICOM viewer embedded on media (optional and selectable in Config)
• Alphanumeric data can be exported in XML format
• JPEG export ("Save As") for still frames
• AVI and MPEG export ("Save As") for cineloops

Self-contained DICOM Viewer (optional)

• Allows interactive viewing of images, loops or full exams from remote location
• Using MPEGvue, exams may be stored onto removable media or on remote networked system together with integrated MPEGvue player for viewing on standard PC
• Smart email feature allows transparent transmission of images via email using resident Outlook™ email client

eVue/MPEGvue (optional)

• Allows interactive viewing of images, loops or full exams from remote location
• Using MPEGvue, exams may be stored onto removable media or on remote networked system together with integrated MPEGvue player for viewing on standard PC
• Smart email feature allows transparent transmission of images via email using resident Outlook™ email client

Scanning Parameters

• Infinite number of effective channels
• Minimum field-of-view range (depth): 0 – 2 cm (zoom) (probe dependent)
• Maximum field-of-view range (depth): 0 – 36 cm (probe dependent)
• Width range: 10 – 120 degrees
• Continuous dynamic receive focus/continuous dynamic receive aperture
• Adjustable dynamic range, infinite upper level
• Image reverse: Right/left
• Image rotation of 0° 180°

Tissue Imaging

General

• Variable transmit frequencies for resolution/penetration optimization
• Display zoom with zoom area control
• High-Resolution (HR) zoom – concentrates all image acquisition power into selected Region of Interest (ROI)
• Variable contour filtering – for edge enhancement
• Depth range up to 36 cm – probe specific

Insite™ Express Connection (ExC) Enables Remote Service and Training

• Easy, flexible and secure connectivity configuration. The "Contact GE" on-screen button directly generates a real-time service request to the GE online engineering or application specialist. It takes a snapshot (e.g., error logs, setup files) of the system at the time of the service request to enable analysis of problem before customer contact
• Virtual Console Observation (VCO) enables the customer to allow desktop screens to be viewed and controlled remotely over the encrypted tunnel to enable real-time training, device configuration and clinical application support
• Operation of Insite Express Connection is dependent on the infrastructure being available – check with your local GE service representative
• File transfer enables the customer (biomed or clinician) to directly transfer system information (e.g., system logs, images, parametric data) to GE product engineering teams (no patient data transferred)
• Software reload provides remote application reconstruction and recovery capabilities in the event of system corruption
Selective grayscale parameters: Gain, reject, DDP, clarity, dynamic range and compress – can be adjusted in live, digital replay and image clipboard recall (probe dependent)

Automatically calculated TGC curves reduces operator interaction

Automatically calculated lateral gain

Smart depth: automatically optimizing transmit pattern parameters according to scan-depth setting

2D Mode

Sector tilt and width control

Frame rate in excess of 1500 fps, depending on probe, settings and applications

Coded octave imaging with coded phase inversion – 3rd generation harmonic tissue imaging providing improved lateral and contrast resolution over conventional fundamental imaging. Features help reduce noise, improve wall definition, and axial resolution, making it well suited for a wide variety of patient groups

Confoocal imaging – allows for multiple transmit focal zones over range of view and a high vector density, probes dependent

Automatic tissue optimization – single keystroke optimizes immediately automatically and dynamically different grayscale settings with the goal of signal independent uniform gain and contrast distribution

UD clarity and UD speckle reduce imaging – an advanced image processing technique to remove speckle in real-time examining the relative difference between neighboring pixel values and determining whether the grayscale variations have a sharp difference, follow a trend, or are random in nature

HD imaging – real-time simultaneous acquisition at dual frequencies compounded to help reduce speckle and noise while enhancing resolution and contrast

Multiple-angle compound imaging – multiple co-planar images from different angles combined into a single image in real-time to help enhance border definition and contrast resolution, as well as reduce angular dependence of border or edge as compared to no-compound imaging

Elevation compounding (with 6VT probe)

LOGIQView: Provides the ability to construct and view a static 2D image with wider field-of-view of a given transducer. This allows viewing and measurements of anatomy that is larger than what would fit in a single image

Virtual apex provides a wider field-of-view with phased array probes, effective at certain imaging views where a wide near field may be preferred

L/R and up/down invert, in live, digital replay or image clipboard recall

Digital replay for retrospective review or automatic looping of images, allowing for adjustment of parameters such as gain, reject, anatomical M-mode, persistence and replay speed

Data dependent processing performs temporal processing which helps reduce random noise but leaves motion of significant tissue structures largely unaffected – can be adjusted even in digital replay

256 shades of gray

Colorized 2D-mode, user-selectable in real-time, digital replay

M-mode

Trackball steers M-mode line available with all imaging probes – max steering angle is probe dependent

Simultaneous real-time 2D- and M-mode

M-mode PRF 1 kHz – image data acquired is combined to give high-quality recording regardless of display scroll speed

Digital replay for retrospective review of spectral data

Several top-bottom formats, side-by-side format and time-motion-only format – can be adjusted in live or digital replay

Selectable horizontal scroll speed: 1, 2, 3, 4, 6, 8, 12, 16 seconds across display

Horizontal scroll can be adjusted in live or digital replay

Anatomical M-mode

M-mode cursor can be adjusted at any plane

Curved anatomical M-mode – free (curved) drawing of M-mode generated from the cursor independent from the axial plane

Can be activated from live, digital replay or image clipboard recall

Anatomical color and tissue velocity M-mode

M&A capability

Color Doppler Imaging

General

Steerable color Doppler available with all imaging probes – max steering angle is probe dependent

Trackball-controlled ROI

Removal of color map from the tissue during digital replay

Digital replay for retrospective review of color or color M-mode data allowing for adjustment of parameters such as encoding principle, color priority and color gain even on stored data

PRF settings – user-selectable

Advanced regression wall filter gives efficient suppression of wall clutter

For each encoding principle, multiple color maps can be selected in live and digital replay – variance maps available

More than 65,000 simultaneous colors processed, providing a smooth display two-dimensional color maps containing a multitude of color hues
• Simultaneous display of grayscale 2D and 2D with color flow
• Color invert – user-selectable in live and digital replay
• Variable color baseline – user-selectable in live and digital replay
• Multi-variate color priority function gives delineation of disturbed flows even across bright areas of the 2D-mode image
• Color Doppler frequency can be changed independently from 2D

Color Flow Imaging
• The SSound platform with its parallel beamformer architecture allows a combination of ultra-high frame rate and increased lateral resolution compared to previous generation GE scanners
• Very high digital signal processing power, maintaining high frame rates with large ROI’s even for very low PRF settings
• Frame rate in excess of 700 fps, depending on probe and settings
• Variable ROI size in width and depth
• User-selectable radial and lateral averaging to help reduce statistical uncertainty in the color velocity and variance estimates
• Data Dependent Processing (DDP) performs temporal processing and display smoothing to help reduce loss of transient events of hemodynamic significance
• Digital replay for retrospective review or automatic looping of color images, allowing for adjustment of parameters such as DDP, encoding principle, baseline shift, color maps, color priority and color gain even on frozen/recalled data
• Application-dependent, multi-variate motion discriminator helps reduce flash artifacts
• Dedicated coronary flow application
• Multiple-angle compound imaging in 2D mode is maintained while in color Doppler mode

Color Angio
• Angle-independent mode for visualization of small vessels with increased sensitivity compared to standard color flow of previous GE products

Color M-mode
• Variable ROI length and position – user-selectable
• User-selectable radial averaging to help reduce statistical uncertainty in the color velocity and variance estimates
• Selectable horizontal scroll speed: 1, 2, 3, 4, 6, 8, 12, 16 seconds across display – can be adjusted during live, digital replay or image clipboard recall
• Real-time 2D image while in color M-mode
• Same controls and functions available as in standard 2D color Doppler

Anatomical Color M-mode
• GE-patented, any plane color M-mode display derived from color Doppler cine loop
• Also applicable to tissue velocity Imaging
• M&A capability

B-flow
• B-flow is a digital imaging technique that provides real-time visualization of vascular hemodynamics by directly visualizing blood reflectors and presenting this information in a grayscale display
• Use of GE-patented techniques to boost blood echoes, and to help preferentially suppress non-moving tissue signals
• B-flow is available for most vascular and shared service applications

Blood Flow Imaging
• Combines color Doppler with grayscale speckle imaging
• Helps improve delineation of blood flow without bleeding into tissue or vessel wall

Blood Flow Angio Imaging
• Combines angio with grayscale speckle imaging

Tissue Velocity Imaging

Tissue Velocity Imaging Mode
• Myocardial Doppler imaging with color overlay on tissue image
• Tissue Doppler data can be acquired in background during regular 2D imaging
• The velocity of myocardial segments after entire heart cycle can be displayed in one single image
• Tissue color overlay can be removed to show just the 2D image, still retaining the tissue velocity information
• Quantitative profiles for TVI, tissue tracking, strain and strain rate can be derived
• Time markers for valve events derived from any TM mode help simplify understanding of signals in velocity traces or curved anatomical M-mode

Tissue Tracking Mode
• Real-time display of the time integral of TVI for quantitative display of myocardial systolic displacement
• Myocardial displacement is calculated and displayed as a color-coded overlay on the grayscale and M-mode image – different colors represent different displacement ranges

Tissue Synchronization Imaging Mode (option, enabled by Advanced QScan)
• Parametric imaging which gives information about synchronicity of myocardial motion
• Myocardial segments colored according to time to peak velocity, green for early and red for late peak
• Waveform trace available to obtain quantitative time to peak measurement from TSI Image
• Available in live scanning, as well as an offline calculation derived from tissue Doppler data
• Additional features in combination with multi-dimensional imaging option
• Simultaneous acquisition of tri-plane TSI images covering all standard segments in apical views
• Efficient segment specific TSI time measurements
• Immediate bulls-eye report
• Automatic calculated TSI synchrony indexes
• TSI surface mapping
• LV synchronization report template
• CRT programming protocol

Strain/Strain Rate Mode (option, enabled by Advanced QScan)
• Tissue deformation (strain) and rate of deformation (strain rate) are calculated and displayed as real-time, color-coded overlay on the 2D image
• Cine compound calculates and displays cineloops generated from a temporal averaging of multiple consecutive heart cycles
• Anatomical M-mode and curved anatomical M-mode displays (SI and SRI)

Spectral Doppler
General
• Operates in PW, HPRF and CW modes
• Trackball steerable Doppler available with all imaging probes – max steering angle is probe dependent
• Selectable Doppler frequency for enhanced optimization
• High-quality, real-time duplex or triplex operation in all Doppler modes, CW and PW, and for all velocity settings
• Frame rate control for optimized use of acquisition power between spectrum, 2D and color Doppler modes in duplex or triplex modes
• Very fast and flexible spectrum analysis with an equivalent DFT rate of 0.2 ms
• Automatic Spectrum Optimization (ASO) provides a single press, automatic, real-time optimization of PW or CW spectrum scale, and baseline display
• Dynamic gain compensation for display of flows with varying signal strengths over the cardiac cycle to help improve ease of use
• Dynamic reject gives consistent suppression of background – user-selectable in real-time, digital replay or image clipboard recall
• Digital replay for retrospective review of spectral Doppler data
• Several top-bottom formats, side-by-side format and time-motion-only format – can be adjusted in live or digital replay
• Selectable horizontal scroll speed: 1, 2, 3, 4, 6, 8, 12, 16 seconds across display – can be adjusted in live or digital replay
• Adjustable spectral Doppler display parameters: Gain, reject, compress, color maps – can be adjusted in live or digital replay
• User-adjustable baseline shift – in live, digital replay and image clipboard recall
• Adjustable velocity scale
• Wall filters with range 10-2000 Hz (velocity scale dependent)
• Angle correction with automatic adjustment of velocity scale – in live, digital replay and image clipboard recall
• Auto Doppler angle
• Stereo speakers mounted in the front panel
• Display annotations of frequency, mode, scales, Nyquist limit, wall filter setting, angle correction, acoustic power indices
• Compound in duplex

PW/HPRF Doppler
• Automatic HPRF Doppler maintains its sensitivity even for shallow depths and with the highest PRF’s
• Digital velocity tracking Doppler employs processing in range and time for high-quality spectral displays
• Adjustable sample volume size of 1-16 mm (probe dependent)
• Maximum sample volume depth 30 cm

CW Doppler
• Highly sensitive steerable CW available with all phased array probes
• Tissue velocity Doppler

Physiological Traces
• Integrated three-lead ECG module
• Automatic QRS complex detection
• External ECG lead input
• Internally generated respiratory trace using ECG leads
• ECG lead selection
• Adjustable ECG QRS markers

Automatic Optimization
• Dynamic optimization of B-mode image to improve contrast resolution, TGC and grayscale (soft or sharp, user-selectable)
• Auto-spectral optimize – dynamic adjustments of baseline, and PRF (on live image) and angle correction

Measurement and Analysis (M&A)
• Personalized measurement protocols allow individual set and order of M&A items
• Measurements can be labeled seamlessly by using protocols or post assignments
• Measurements assignable to protocol capability
• Parameter annotation follow ASE standard
• Seamless data storage and report creation
• User-assignable parameters
• Comprehensive set of cardiac measurements and calculations to help assess dimensions, flow properties and other functional parameters of the heart
• Comprehensive set of shared service measurements and calculations covering vascular, abdominal, obstetrics and other application areas

• Configuration package to set up a customized set and sequence of measurements to use, defining user-defined measurements and changing settings for the factory-defined measurements

• Stress echo support allowing wall motion scoring and automatic stress level labeling of measurements

• Support for measuring on DICOM images

• Automatic Doppler trace functionality for use in non-cardiac applications in both live and replay

• Worksheet for review, edit and deletion of performed measurements

• Reporting support allowing a configurable set of measurements to be shown in the exam report

• DICOM SR export of measurement data

Intima Media Thickness (IMT) Measurements (optional)

• Automatic measurements (patent pending) of carotid artery Intima-Media Thickness (IMT) on any acquired frame

• On-board IMT package facilitates non-interrupted workflow – fully integrated with M&A, worksheet, archiving and reporting functions

• Algorithm provides robust, quick, reliable measurements which can be stored to the on-board archive for review and reporting

• IMT measurement can be made from frozen images or images retrieved from archive

• IMT package supports measurements of different regions of the intima in the carotid vessel (e.g., Lt./Rt./CCA/ICA etc.)

• Frame for IMT measurement can be selected in relation to the ECG waveform

Z-Scores

• Limited implementation of z-scores for a set of predefined pediatric dimension measurements

Quantitative Analysis Package (Q-Analysis) (optional)

• Traces for velocity or derived parameters (strain rate, strain, displacement) inside defined regions of interest as function of time

• Contrast analysis with traces for grayscale intensity or angio power inside defined regions of interest as function of time

• Curved anatomical M-mode display allowing an M-mode along an arbitrary curve in a 2D image

• Sample-area points may be dynamically anchored to move with the tissue when running the cineloop

• Cine compound displays cineloops generated from a temporal averaging of multiple consecutive heart cycles

Automated Function Imaging (AFI) (optional)

• Parametric imaging tool which gives quantitative data for global and segmental wall motion

• Allows comprehensive assessment at a glance by combining three longitudinal views into one comprehensive bulls-eye view

• Integrated into M&A package with specialized report templates

• 2D strain based data moves into clinical practice

• Simplified workflow with fully automated ROI tracing (if configured), quick tips and combined display of traces from all segments

Automated Ejection-Fraction Calculation (AutoEF) (optional)

• Automated EF measurement tool based on 2D-speckle tracking algorithm and on Simpson

• Integrated into M&A package with worksheet summary

Generic Measurements

• BSA (Body Surface Area)

• MaxPG (Maximum Pressure Gradient)

• MeanPG (Mean Pressure Gradient)

• % Stenosis (Stenosis Ratio)

• PI (Pulsatility Index)

• RI (Resistivity Index)

• HR (Heart Rate) - beats/minute

• A/B Ratio (Velocities Ratio)

• TAMAX (Time Averaged Maximum Velocity) – Trace method is Peak or Manual

• TAMIN (Time Averaged Minimum Velocity) – Trace method is Floor

• TAMEAN (Time Averaged Mean Velocity) – Trace method is Mean

• Volume

OB/GYN Application Module

• OB package for fetal growth analysis containing more than 100 biometry tables

• Dedicated OB/GYN reports

• Fetal graphical growth charts

• Growth percentiles

• Multi-gestational calculations (up to four)

• Programmable OB tables

• Expanded worksheets

• User-selectable fetal growth parameters based on European, American or Asian methods charts

• GYN package for ovary and uterus measurements and reporting

OB Measurements/Calculations

• Gestational age by:
 - GS (Gestational Sac)
 - CRL (Crown Rump Length)
 - FL (Femur Length)
 - BPD (Biparietal Diameter)
 - AC (Abdominal Circumference)
 - HC (Head Circumference)
- APTD x TTD (Anterior/Posterior Trunk Diameter by Transverse Trunk Diameter)
- LV (Length of Vertebra)
- FTA (Fetal Trunk Cross-sectional Area)
- HL (Humerus Length)
- BD (Binocular Distance)
- FT (Foot Length)
- OFD (Occipital Frontal Diameter)
- TAD (Transverse Abdominal Diameter)
- TCD (Transverse Cerebellum Diameter)
- THD (Thorax Transverse Diameter)
- TIB (Tibia Length)
- ULNA (Ulna Length)
- Estimated Fetal Weight (EFW) by:
 - AC, BPD
 - AC, BPD, FL
 - AC, BPD, FL, HC
 - AC, FL
 - AC, HC
 - EFW
- Calculations and Ratios
 - FL/BPD
 - FL/AC
 - FL/HC
 - HC/AC
 - CI (Cephalic Index)
 - AFI (Amniotic Fluid Index)
 - CTAR (Cardio-Thoracic Area Ratio)
- Measurements/calculations by:
 - ASUM, ASUM 2001, Berkowitz, Bertagnoli, Brenner, Campbell, CFEF, Chitty, Eik-Nes, Ericksen, Goldstein, Hadlock, Hansmann, Hellman, Hill, Hohler, Jeanty, JSUM, Kurtz, Mayden, Mercer, Merz, Moore, Nelson, Osaka University, Paris, Rempen, Robinson, Shepard, Shepard/Warsoff, Tokyo University, Tokyo/Shinozuka, Yarkoni
- Fetal graphical trending
- Growth percentiles
- Multi-gestational calculations (four)
- Fetal qualitative description (anatomical survey)
- Fetal environmental description (biophysical profile)
- Programmable OB tables
- Over 20 selectable OB calculations
- Expanded worksheets

GYN Measurements/Calculations
- Right ovary length, width, height
- Left ovary length, width, height
- Uterus length, width, height
- Cervix length, trace
- Ovarian volume
- ENDO (endometrial thickness)
- Ovarian RI
- Uterine RI
- Follicular measurements
- Summary reports

Vascular Calculations
- RT ECA (Right External Carotid Artery Velocity)
- RT CCA (Right Common Carotid Artery Velocity)
- RT BIFURC (Right Carotid Bifurcation Velocity)
- RT ICA (Right Internal Carotid Artery Velocity)
- RT ICA/CCA (Right Internal Carotid Artery Velocity/Common Carotid Artery Velocity Ratio)
- LT ECA, LT CCA, LT BIFURC, LT ICA, LT ICA/CCA (same as above, for Left Carotid Artery)
- A/B Ratio (Velocities Ratio)
- % Stenosis (Stenosis Ratio)
- S/D Ratio (Systolic Velocity/Diastolic Velocities Ratio)
- PI (Pulsatility Index)
- RI (Resistivity Index)
- HR (Heart Rate) – beats/minute

Cardiac Measurements
- %FS (LV Fractional Shortening)
- %IVS Thck (IVS Fractional Shortening)
- %LV PW Thck (LV Posterior Wall Fractional Shortening)
- Ao Arch Diam (Aortic Arch Diameter)
- Ao asc (Ascending Aortic Diameter)
- Ao Desc Diam (Descending Aortic Diameter)
- Ao Isthmus (Aortic Isthmus)
- Ao Root Diam (Aortic Root Diameter)
- AR ERO (PISA: Regurgitant Orifice Area)
- AR Flow (PISA: Regurgitant Flow)
- AR PHT (AV Insuf. Pressure Half Time)
- AR Rad (PISA: Radius of Aliased Point)
- AR RF (Regurgitant Fraction over the Aortic Valve)
- AR RV (PISA: Regurgitant Volume Flow)
- AR Vel (PISA: Aliased Velocity)
- AR Vmax (Aortic Insuf. Peak Velocity)
- AR VTI (Aortic Insuf. Velocity Time Integral)
- ARed max PG (Aortic Insuf. End-Diastole Pressure Gradient)
- ARed Vmax (Aortic Insuf. End-Diastolic Velocity)
- AV Acc Slope (Aortic Valve Flow Acceleration)
- AV Acc Time (Aortic Valve Acceleration Time)
- AV Acct/ET (AV Acceleration to Ejection Time Ratio)
- AV EOA I (VTI) (Aortic Valve Effective Orifice Area Index by Continuity Equation VTI)
- AV EOA I Vmax (Aortic Valve Effective Orifice Area Index by Continuity Equation Peak V)
- AV CO (Cardiac Output by Aortic Flow)
- AV Cusp (Aortic Valve Cusp Separation, 2D)
- AV Dec Time (Aortic Valve Deceleration Time)
- AV Diam (Aortic Diameter, 2D)
- AV max PG (Aortic Valve Peak Pressure Gradient)
- AV mean PG (Aortic Valve Mean Pressure Gradient)
- AV SV (Stroke Volume by Aortic Flow)
• MV Acc Slope (Mitral Valve Flow Acceleration)
• MV Acc Time (Mitral Valve Acceleration Time)
• MV Acc/Dec Time (MV: Acc. Time/Decel. Time Ratio)
• MV an diam (Mitral Valve Annulus Diameter, 2D)
• MV CO (Cardiac Output by Mitral Flow)
• MV Dec Slope (Mitral Valve Flow Deceleration)
• MV Dec Time (Mitral Valve Deceleration Time)
• MV E Velocity (MV Velocity Peak E)
• MV E/A Ratio (Mitral Valve E-Peak to A-Peak Ratio)
• MV max PG (Mitral Valve Peak Pressure Gradient)
• MV mean PG (Mitral Valve Mean Pressure Gradient)
• MV PHT (Mitral Valve Pressure Half Time)
• MV Reg Frac (Mitral Valve Regurgitant Fraction)
• MV SI (Stroke Volume Index by Mitral Flow)
• MV SV (Stroke Volume by Mitral Flow)
• MV Time to Peak (Mitral Valve Time to Peak)
• MV Vmax (Mitral Valve Peak Velocity)
• MV Vmean (MV Mean Velocity)
• MV VTI (Mitral Valve Velocity Time Integral)
• MVA (Mitral Valve Area)
• MVA By PHT (Mitral Valve Area according to PHT)
• MVA by plan (Mitral Valve Area, 2D)
• MVET (Mitral Valve Ejection Time)
• P Vein A (Pulmonary Vein Velocity Peak A) – reverse
• P Vein A Dur (Pulmonary Vein A-Wave Duration)
• P Vein D (Pulmonary Vein End-Diastolic Peak Velocity)
• P Vein S (Pulmonary Vein Systolic Peak Velocity)
• PAEDP (Pulmonary Artery Diastolic Pressure)
• PE(d) (Pericard Effusion, M-mode)
• PEs (Pericard Effusion, 2D)
• PR max PG (Pulmonic Insuff. Peak Pressure Gradient)
• PR mean PG (Pulmonic Insuff. Mean Pressure Gradient)
• PR PHT (Pulmonic Insuff. Pressure Half Time)
• PR Vmax (Pulmonic Insuff. Peak Velocity)
• PR VTI (Pulmonic Insuff. Velocity Time Integral)
• PRender max PG (Pulmonic Insuff. End-Diastole Pressure Gradient)
• PRender Vmax (Pulmonic Insuff. End-Diastolic Velocity)
• Pulmonic Diam (Pulmonary Artery Diameter, 2D)
• PV Acc Slope (Pulmonary Valve Flow Acceleration)
• PV Acc Time (Pulmonary Valve Acceleration Time)
• PV Acc Time/ET Ratio (PV Acceleration to Ejection Time Ratio)
• PV an diam (Pulmonary Valve Annulus Diameter, 2D)
• PV Ann Area (Pulmonary Valve Area)
• PV CO (Cardiac Output by Pulmonic Flow)
• PV max PG (Pulmonic Valve Peak Pressure Gradient)
• PV mean PG (Pulmonic Valve Mean Pressure Gradient)
• PV SV (Stroke Volume by Pulmonic Flow)
• PV Vmax (Pulmonary Artery Peak Velocity)
• PV Vmean (PV Mean Velocity)
• PV VTI (Pulmonary Artery Velocity Time Integral)
• PVA (VTI) (Pulmonary Valve Velocity Time Integral)
• PVET (Pulmonic Valve Ejection Time)
• PVPEP (Pulmonic Valve Pre-Ejection Period)
• PVPEP/ET Ratio (PV Pre-Ejection to Ejection Time Ratio)
• Qp/Qs (Pulmonic-to-Systemic Flow Ratio)
• RA Major (Right Atrium Major, 2D)
• RA Minor (Right Atrium Minor, 2D)
• RAA (d) (Right Atrium Area, 2D, Diastole)
• RAA (s) (Right Atrium Area, 2D, Systole)
• RAEDV A2C (Right Atrium End Diastolic Volume, Apical 2 Chamber)
• RAESV A-L (RA End Systole Volume [A-L])
• RALd (Right Atrium Length, Diastole)
• RALs (RA Length, Systole)
• RIMP (Right Index of Myocardial Performance)
• RJA (A4C) (Regurgitant Jet Area)
• RJA/LAA (Regurgitant Jet Area ratio RJA/LAA)
• RV Major (Right Ventricle Major)
• RV Minor (Right Ventricle Minor)
• RV S' (Tricuspid annulus systolic excursion velocity)
• RVAWd (Right Ventricle Wall Thickness, Diastolic, 2D)
• RVAWs (Right Ventricle Wall Thickness, Systolic, 2D)
• RVET (Right Ventricle Ejection Time)
• RVIDd (Right Ventricle Diameter, Diastolic, 2D)
• RVIDs (Right Ventricle Diameter, Systolic, 2D)
• RVOT Area (Right Ventricle Outflow Tract Area)
• RVOT Diam (RV Output Tract Diameter, 2D)
• RVOT Diam (RV Output Tract Diameter, M-Mode)
• RVOT max PG (RVOT Peak Pressure Gradient)
• RVOT meanPG (RVOT Mean Pressure Gradient)
• RVOT SI (LV Stroke Volume Index by Pulmonic Flow)
• RVOT SV (Stroke Volume by Pulmonic Flow)
• RVOT Vmax (RVOT Peak Velocity)
• RVOT Vmean (RVOT Mean Velocity)
• RVOT VTI (RVOT Velocity Time Integral)
• RVSP (Right Ventricle Systolic Pressure)
• RVWD (Right Ventricle Wall Thickness, Diastolic, M-mode)
• RVWs (Right Ventricle Wall Thickness, Systolic, M-mode)
• RAA (d) (Right Atrium Area, 2D, Diastole)
• RAA (s) (Right Atrium Area, 2D, Systole)
• SI (A-L A2C) (LV Stroke Index, Single Plane, 2CH, Area-Length)
• SI (A-L A4C) (LV Stroke Index, Single Plane, 4CH, Area-Length)
• SI (Bi-plane) (LV Stroke Index, Bi-plane, MOD)
• SI (Bullet) (LV Stroke Index, Bi-plane, Bullet)
• SI (MOD A2C) (LV Stroke Index, Single Plane, 2CH, MOD)
• SI (MOD A4C) (LV Stroke Index, Single Plane, 4CH, MOD)
• SI (Teich) (LV Stroke Index, Teicholtz, 2D)
• SI (Teich) (LV Stroke Index, Teicholtz, M-mode)
• SV (A-L A2C) (LV Stroke Volume, Single Plane, 2CH, Area-Length)
• SV (A-L A4C) (LV Stroke Volume, Single Plane, 4CH, Area-Length)
• SV (Bi-plane) (LV Stroke Volume, Bi-plane, MOD)
• SV (Bullet) (LV Stroke Volume, Bi-plane, Bullet)
• SV (MOD A2C) (LV Stroke Volume, Single-plane, 2CH, MOD) – Simpson
• SV (MOD A4C) (LV Stroke Volume, Single-plane, 4CH, MOD) – Simpson
• SV (Cube) (LV Stroke Volume, 2D, Cubic)
• SV (Cube) (LV Stroke Volume, M-mode, Cubic)
• SV (Teich) (LV Stroke Volume, 2D, Teicholtz)
• SV (Teich) (LV Stroke Volume, M-mode, Teicholtz)
• Systemic Diam (Systemic Vein Diameter, 2D)
• Systemic Vmax (Systemic Vein Peak Velocity)
• Systemic VTI (Systemic Vein Velocity Time Integral)
• TAPSE (Tricuspid Annular Plane Systolic Excursion)
• TCO (Tricuspid Valve Closure to Opening)
• TR max PG (Tricuspid Regurg. Peak Pressure Gradient)
• TR mean PG (Tricuspid Regurg. Mean Pressure Gradient)
• TR Vmax (Tricuspid Regurg. Peak Velocity)
• TR Vmean (Tricuspid Regurg. Mean Velocity)
• TR VTI (Tricuspid Regurgitation Velocity Time Integral)
• TV A dur (Tricuspid Valve A-Wave Duration)
• TV A Velocity (Tricuspid Valve A Velocity)
• TV Acc Time (Tricuspid Valve Time to Peak)
• TV Ann Area (Tricuspid Valve Area)
• TV Ann diam (Tricuspid Valve Annulus Diameter, 2D)
• TV Area (Tricuspid Valve Area, 2D)
• TV CO (Cardiac Output by Tricuspid Flow)
• TV Dec Slope (Tricuspid Valve Flow Deceleration)
• TV E Velocity (Tricuspid Valve E Velocity)
• TV EA Ratio (Tricuspid Valve E-Peak to A-Peak Ratio)
• TV max PG (Tricuspid Valve Peak Pressure Gradient)
• TV mean PG (Tricuspid Valve Mean Pressure Gradient)
• TV mean PG (Tricuspid Valve Mean Pressure Gradient)
• TV PHT (Tricuspid Valve Pressure Half Time)
• TV SV (Stroke Volume by Tricuspid Flow)
• TV Vmean (TV Mean Velocity)
• TV VTI (Tricuspid Valve Velocity Time Integral)
• VSD max PG (VSD Peak Pressure Gradient)
• VSD Vmax (VSD Peak Velocity)

Please refer to the Reference Manual for the full list of measurements and calculations for all applications.

Annotations

Body Marks
• Body mark icons for location and position of probe
• Easy selection of body marks from touch panel

Text Annotations
• Easy selection of text annotations from touch panel

Scan Assist Pro (optional)
• Customizable automations that assist the user through each step of the scan
• Facilitates consistency and reduce keystrokes
• Supports selection of all modes, all measurements and dual annotations
• Imaging attributes: Octave, Steer, Dual/Quad screen, Compound, LogiqView, Zoom, Depth, Scale and Baseline
• On-line or off-line protocol editor
• Image acquisition according to predefined protocol templates
• Various factory protocol templates
• User-configurable protocol templates
Stress Echo (optional)

Supported Protocol Examinations
• 2D pharmacological stress echo
• 2D bicycle stress echo
• 2D continuous capture stress echo (treadmill stress echo)
• Cardiac resynchronization therapy programming protocols (available with the Advanced QScan option)

Protocol Examinations Features (enabled with stress option)
• Wall motion scoring: Analysis by wall motion in individual myocardial segments
• Show reference: Show a reference image from baseline or previous level during acquisition
• Smart stress: Automatically set up various scanning parameters (for instance geometry, frequency, gain, etc.) according to same projection on previous level
• Scan mode settings: Scan mode may be specified for individual views in the protocol
• Preview of store: Show running loops as preview before storing to the examination

Continuous Capture
• Continuously acquire large amounts of 2D image data, and selection of projection views for analysis afterwards
• The entire continuous capture recording may be kept in memory while it is possible to store new images outside the protocol template, or the entire recording can be stored to file
• Selection of projection views on scanner or EchoPAC when the entire recording is stored to file

Wall Motion Scoring
• As part of the measurement and analysis package one can access a wall motion assessment module, providing analysis/scoring of individual myocardial segments
• For use with all stress modalities

Cardiac Resynchronization Therapy (CRT) Programming Protocols
• CRT protocols require Stress and Advanced QScan
• Tailored acquisition protocol for data needed for programming of AV and VV delays in biventricular pacemakers
• Image acquisition of a set of projection views with various scan mode settings
• Template editor
• User-configurable protocol templates
• Configure protocol name, number of levels and views, name of level and views and several other protocol settings (smart stress, show reference, scan mode, preview of store, timer handling, etc.)

Safety Conformance
• The Vivid S60 is built to meet the requirements of:
 - IEC60601-2-37
 - IEC60601-1
 - IEC60601-1-2
 - IEC60601-1-6
 - UL60601-1
 - NEMA UD3
• The European Medical Devices Directive (MDD) 93/42/EEC (CE Mark)
• Directive 2011/65/EU on the restriction of use of certain hazardous substances
• The Vivid S60 ultrasound unit is a Class I device, with BF (probes) and CF (ECG leads) applied parts according to IEC60601-1
• The Vivid S60 ultrasound unit meets the EMC requirements in IEC/EN60601-1-2:2007 Class B

Virus Protection
To reduce virus vulnerability, Vivid S60 is configured with a minimal set of open ports and with all network services not actively used by the system closed down. This helps to significantly reduce the risk of a virus attack on Vivid S60.

GE is continuously judging the need for additional actions to reduce vulnerability of equipment; this includes vulnerability scanning of our products and evaluation of new security patches for the 3rd-party technology used. Microsoft® (and other) security patches that address serious issues with Vivid S60 will be made available to customers after GE verification of those patches.

Transducers
3Sc-RS Phased Array Probe
• Probe presets: Cardiac adult, pediatric, abdomen, fetal heart, transcranial, coronary, stress, LVO contrast, LVO stress, OB/GYN, vascular
• Biopsy guide: Multi-angle disposable with a reusable bracket

6S-D Phased Array Probe
• Probe presets: Pediatric, cardiac, coronary, neonatal head, abdominal

12S-D Phased Array Probe
• Probe presets: Pediatric, cardiac, coronary, neonatal head, rodent, vascular (incl. carotid, LEA, LEV, UEA, UEV), abdomen

9L-D Linear Array Probe
• Vascular (incl. carotid, LEA, LEV, UEA, UEV), musculoskeletal, nerves, small parts, thyroid
• Biopsy guide: Multi-angle disposable with a reusable bracket

C1-6-D XDclear Single Crystal Curved Array Probe (Convex)
• Probe presets: Abdomen, OB/GYN, urology, vascular, fetal heart
• Biopsy guide: Multi-angle, disposable with a reusable bracket

P2D Pencil Probe
• Probe presets: Cardiac

6Tc-RS TEE Probe
• Probe presets: Cardiac, coronary, LVO contrast
6VT-D Active Matrix TEE Probe
- Probe presets: Cardiac, LVO contrast, coronary

9T-RS TEE Probe
- Probe presets: Pediatric

Wideband Probes
- Electronic selection between four solid-state and one stand-alone Doppler probe connectors
- Three probe sockets are DLP type
- One RS probe socket

<table>
<thead>
<tr>
<th>PROBE</th>
<th>FREQUENCY RANGE</th>
<th>CATALOG #</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Sc-RS (Sector)</td>
<td>1.3 – 4.5 MHz</td>
<td>H45041DL</td>
</tr>
<tr>
<td>6S-D (Sector)</td>
<td>2.4 – 8.0 MHz</td>
<td>H45021RR</td>
</tr>
<tr>
<td>12S-D (Sector)</td>
<td>4.0 – 12.0 MHz</td>
<td>H45021RT</td>
</tr>
<tr>
<td>9L-D (Linear)</td>
<td>2.4 – 10.0 MHz</td>
<td>H40442LM</td>
</tr>
<tr>
<td>C1-6-D (Convex)</td>
<td>1.6 – 6.0 MHz</td>
<td>H40472LT</td>
</tr>
<tr>
<td>P2D (Pencil)</td>
<td>2.0 MHz</td>
<td>H4830JE</td>
</tr>
<tr>
<td>6Tc-RS (TEE)</td>
<td>3.0 – 8.0 MHz</td>
<td>H45551ZE</td>
</tr>
<tr>
<td>6VT-D (TEE)₁</td>
<td>3.0 – 8.0 MHz</td>
<td>H45581BJ</td>
</tr>
<tr>
<td>9T-RS (TEE)</td>
<td>3.3 – 10.0 MHz</td>
<td>H45531YM</td>
</tr>
</tbody>
</table>

₁ Also 6VT-D with catalog # H45561TA is supported.
About GE Healthcare

GE Healthcare provides transformational medical technologies and services to meet the demand for increased access, enhanced quality and more affordable healthcare around the world. GE (NYSE: GE) works on things that matter – great people and technologies taking on tough challenges. From medical imaging, software & IT, patient monitoring and diagnostics to drug discovery, biopharmaceutical manufacturing technologies and performance improvement solutions, GE Healthcare helps medical professionals deliver great healthcare to their patients.

GE Healthcare
9900 Innovation Drive
Wauwatosa, WI 53226
U.S.A.

www.gehealthcare.com

imagination at work